[ index.php ] [ docs.php ] [ package.php ] [ tests.php ] [ examples.php ] [ download.php ]
<?php
/**
* @package PDL
*
* Script to test NormalDistribution methods.
*
* Comparison of norm output to NormalDistribution(10, 2) output.
*
* R> dnorm(9, 10, 2) => 0.1760327
* PHP> PDF(9) => 0.17603266338215
*
* R> pnorm(11, 10, 2) => 0.6914625
* PHP> CDF(11) => 0.69146246127401
*
* R> qnorm(.95, 10, 2) => 13.28971
* PHP> ICDF(0.95) => 13.289707253903
*/
require_once '../NormalDistribution.php';
require_once 'make_table.php';
$norm = new NormalDistribution(10, 2);
$Methods = array("getMean()","getStandardDeviation()","getVariance()","PDF(9)","CDF(11)","ICDF(0.95)", "RNG(1)");
$Output[0] = $norm->getMean();
$Output[1] = $norm->getStandardDeviation();
$Output[2] = $norm->getVariance();
$Output[3] = $norm->PDF(9);
$Output[4] = $norm->CDF(11);
$Output[5] = $norm->ICDF(0.95);
$Output[6] = $norm->RNG(1);
make_table("Normal Distribution(10, 2)", "Methods", "Output", $Methods, $Output);
// Test PDF function by feeding an array of $x_vals and
// getting a corresponding array of $p_vals.
$X_Vals = range(8, 12);
$P_Vals = $norm->PDF($X_Vals);
make_table("PDF(X_VALS)", "X Vals Input", "P Vals Output", $X_Vals, $P_Vals);
// Test CDF function by feeding an array of $x_vals and getting
// a corresponding array of $p_vals where each p_val corresponds
// to p(x < $x_vals[$i])
$X_Vals = range(8, 12);
$P_Vals = $norm->CDF($X_Vals);
make_table("CDF(X_VALS)", "X Vals Input", "P Vals Output", $X_Vals, $P_Vals);
// Test InverseCDF function by feeding in P_Vals from previous
// test. Result should be mirror of CDF output.
$X_Vals = $norm->ICDF($P_Vals);
make_table("ICDF(P_VALS)", "P Vals Input", "X Vals Output", $P_Vals, $X_Vals);
// Test RNG function by passing the number of values you want generated.
// Result is an array of random numbers from a normal distribution
$Counter = range(0, 7);
$Rnd_Vals = $norm->RNG(8);
make_table("RNG(N_VALS)", "Counter", "Rnd Vals", $Counter, $Rnd_Vals);
?>